Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Resolving fine structures in the Sun’s corona may provide key insights into rapid eruptions and the heating of the corona. Adaptive optics systems have been used for over two decades to reach the diffraction limit of large telescopes, thereby compensating for atmospheric image blur. Current systems, however, are still limited to observations of the solar disk and fail with coronal objects, leaving fundamental coronal dynamics hidden in that blur. Here we present observations with coronal adaptive optics reaching the diffraction limit of a 1.6-m telescope to reveal very fine coronal details. Furthermore, we discovered a short-lived, fast-moving, finely twisted feature occurring during the decay phase of a flare that quickly destabilized. Coronal adaptive optics increased the spatial resolution by an order of magnitude at visible wavelengths. We report here a large portion of off-limb coronal rain material with observed scales below 100 km. This new adaptive optics scheme opens opportunities for observational discoveries at small scales beyond the solar limb in the highly dynamic corona by exploiting the diffraction limit of large ground-based telescopes.more » « less
- 
            Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
- 
            Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)
- 
            The MCAO pathfinder Clear on the 1.6-meter Goode Solar Telescope has been enabling us to advance solar MCAO from early conceptual demonstrations to science grade wide-field image correction. We report on recent improvements to the control loop and we comment on issues such as the co-aligning of wavefront sensors and deformable mirrors and the sensitivity of wavefront sensor gains. Further, we comment on the challenges to wavefront sensing and the control system architecture faced when scaling up to a 4-meter aperture. Finally, we present an early concept of the future MCAO upgrade for the Daniel K. Inouye Solar Telescope.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
